最近,网赌平台劉正鑫副教授與瑞士保羅謝勒研究所的Bruce Normand研究員合作用變分蒙特卡洛方法研究了六角格子上的K-Γ自旋模型,發現外加不同方向的磁場能誘導出無能隙的U(1) Dirac自旋液體相或有能隙的Abel手征自旋液體相。前者完美的解釋了α-RuCl3材料中低溫強場核磁共振實驗中觀測到的強磁場下磁無序態中的無能隙激發[1],后者還有待實驗進一步確認。該研究結果以“Dirac and Chiral Quantum Spin Liquids on the Honeycomb Lattice in A Magnetic Field”為題于2018年5月發表在Phys. Rev. Lett.上[2]。
量子自旋液體是量子磁性材料中的一種新奇物態,在極低溫下不呈現磁性長程序,其基態具有長程多體糾纏,低能下有滿足分數統計的元激發被稱為任意子。這些任意子激發雖然是電中性的,卻具有演生的規范相互作用,類似于(半)金屬中的電子間的U(1)庫倫相互作用或者超導中準粒子間的Z2規范相互作用。理論上還存在非交換自旋液體,其中的任意子激發服從非交換統計,如果這些非交換任意子在空間中能被局域化,則在量子信息、拓撲量子計算等方面具有潛在的應用。六角格子上基態解析可解的Kitaev模型[3]能實現這種非交換的自旋液體,從而受到廣泛的關注。Kitaev模型中的無能隙相具有Majorana類型的無能隙的自旋元激發,在磁場下能打開能隙并形成非交換手征自旋液體。由于和Kitaev自旋液體理論密切相關,α-RuCl3最近吸引了大量的研究興趣。α-RuCl3是一個具有準二維六角晶格結構的磁性材料,準自旋為1/2的Ru3+之間具有較強的Kitaev類型的鐵磁交換相互作用(K項)。但是,進一步研究發現Ru3+之間還存在其他類型的相互作用,比如斜對角的對稱交換相互作用(Γ項)或者Heisenberg交換相互作用(J項)[4],使其基態呈現zigzag反鐵磁序從而排除了自旋液體的可能性[5]。有趣的是,這個磁序并不穩定,當外加磁場或者壓力達到臨界值時,zigzag反鐵磁序消失。一個自然的問題是,得到的無序的基態是自旋液體嗎?如果是自旋液體,果真是預期的Kitaev類型的嗎?
基于自旋的費米子表象和Gutzwiller投影波函數,劉正鑫副教授和B. Normand研究員用變分蒙特卡洛的方法研究了六角格子上具有K項和Γ項相互作用的K-Γ模型[4,5],發現磁場能驅動系統從zigzag磁有序態發生量子相變進入(部分極化的)磁無序態。由于相互作用的各向異性及自旋軌道耦合的影響,系統的基態強烈依賴于磁場的方向。當磁場強度大于第一臨界值時,基態可能是一個具有Dirac類型元激發的無能隙自旋液體,或者是一個有能隙的手征自旋液體,或者是一個有能隙的平凡的極化態。為了看清基態性質對磁場方向的依賴關系,不妨將磁場方向用球面上的一個點來表達,如圖(A)所示[其中黑色大圓為圖(B)中的晶格平面, x、y、z為自旋軸,分別為其中三個大圓的法向]。當點處于圖中的大圓上的時候,系統處于無能隙的U(1) Dirac自旋液體相,自旋元激發色散關系與圖(C)中類似;當點被近鄰三個大圓包圍的時候,系統處于有能隙的手征自旋液體相;當點被近鄰四個大圓包圍的時候,系統處于有能隙的平凡的極化相。如果磁場進一步加強到達第二臨界磁場的時候,無論磁場沿任何方向,系統將都處于平凡的極化態,相圖如圖(D)所示。
與預期不同的是,這里磁場誘導的自旋液體相并非Kitaev類型的,主要區別包括:(1)磁場誘導的無能隙自旋液體中的自旋原激發是Dirac類型的復費米子,加場后產生的手征自旋液體中的元激發是可交換的,而Kitaev自旋液體中的自旋元激發是Majorana類型的實費米子,加場后產生的手征自旋液體中具有非交換的任意子元激發;(2) 磁場誘導的無能隙自旋液體中演生的規范漲落是U(1)規范場,而Kitaev自旋液體中的演生規范漲落是Z2規范場;(3)磁場誘導的手征自旋液體的熱Hall電導率是整數量子化的,而Kitaev類型手征自旋液體的熱Hall電導率是1/2量子化的。
(D)
該研究的動機來自于人民大學于偉強教授組與南京大學溫景生教授組合作對α-RuCl3材料的低溫核磁共振實驗[1]。實驗結果顯示,當磁場方向位于二維晶格平面內的時候磁場大于8T的時候誘導出一個無序相,而且當磁場強度在7.5T到15T區間內,低溫下自旋-晶格弛豫率與溫度的3次方成比例(即1/T1~T3),表明系統存在錐狀的無能隙激發[值得一提的是,面內磁場誘導的無序態究竟有沒有能隙目前尚存爭議,除了人大于偉強組核磁共振實驗以外,Minhyea Lee組(University of Colorado, Boulder)觀測到的隨溫度的冪律行為也支持低能下存在無能隙激發;而李世燕組(復旦大學)和Nagler組(Oak Ridge National Laboratory)報道觀測到了有限的能隙。事實上,由于錐狀線性色散的低能態密度非常小,實驗上(由于各種復雜因素的影響)或數值上(由于精度或有限尺寸的限制)很難準確斷定低能激發究竟是有能隙的還是具有線性色散關系]。這一現象可從磁場誘導的U(1) Dirac自旋液體理論得到半定量的解釋。理論還預言,方向和大小在某些區間內的磁場能誘導出交換的手征自旋液體相,具有半整數量子化的熱Hall電導,尚有待實驗進一步研究確認。該理論結果為α-RuCl3相關材料及其他阻挫反鐵磁系統中磁場誘導自旋液體的研究提供了新的視角,并為K-Γ模型的進一步理論和數值研究提供了重要的參考。該項目得到了國家自然科學基金、國家重點研發計劃和中國人民大學研究基金的支持。
[1] J. Zheng, K. Ran, T. Li, J. Wang, P. Wang, B. Liu, Z.- X. Liu, B. Normand, J. Wen, and W. Yu,
[2] Z.-X. Liu, B. Normand, (2018).
[3] A. Kitaev, (2006).
[4] W. Wang, Z.-Y. Dong, S.-L. Yu, and J.-X. Li, (2017).
[5] K. Ran, J. Wang, W. Wang, Z.-Y. Dong, X. Ren, S. Bao, S. Li, Z. Ma, Y. Gan, Y. Zhang, J. T. Park, G. Deng, S. Danilkin, S.-L. Yu, J.-X. Li, and J. Wen, (2017).